8/6n-4*(9n^2-4)

Simple and best practice solution for 8/6n-4*(9n^2-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/6n-4*(9n^2-4) equation:


n in (-oo:+oo)

(8/6)*n-(4*(9*n^2-4)) = 0

(8/6)*n-4*(9*n^2-4) = 0

(4*n)/3-4*(9*n^2-4) = 0

(-4*3*(9*n^2-4))/3+(4*n)/3 = 0

4*n-4*3*(9*n^2-4) = 0

4*n-108*n^2+48 = 0

4*n-108*n^2+48 = 0

4*(n-27*n^2+12) = 0

n-27*n^2+12 = 0

DELTA = 1^2-(-27*4*12)

DELTA = 1297

DELTA > 0

n = (1297^(1/2)-1)/(-27*2) or n = (-1297^(1/2)-1)/(-27*2)

n = (1297^(1/2)-1)/(-54) or n = (1297^(1/2)+1)/54

4*(n-((1297^(1/2)-1)/(-54)))*(n-((1297^(1/2)+1)/54)) = 0

(4*(n-((1297^(1/2)-1)/(-54)))*(n-((1297^(1/2)+1)/54)))/3 = 0

(4*(n-((1297^(1/2)-1)/(-54)))*(n-((1297^(1/2)+1)/54)))/3 = 0 // * 3

4*(n-((1297^(1/2)-1)/(-54)))*(n-((1297^(1/2)+1)/54)) = 0

( n-((1297^(1/2)+1)/54) )

n-((1297^(1/2)+1)/54) = 0 // + (1297^(1/2)+1)/54

n = (1297^(1/2)+1)/54

( n-((1297^(1/2)-1)/(-54)) )

n-((1297^(1/2)-1)/(-54)) = 0 // + (1297^(1/2)-1)/(-54)

n = (1297^(1/2)-1)/(-54)

n in { (1297^(1/2)+1)/54, (1297^(1/2)-1)/(-54) }

See similar equations:

| X/2=(x-2)/18 | | 49-16y^2=0 | | X/265=(x-280)/185 | | X/265000=x-280000/185000 | | X/265000=(x-280000)/185000 | | 9-abs(3x+9)=3 | | (x+y)dx+(2x+2y-1)dy=0 | | -8/27-4/3 | | 4y^2+29y+30=0 | | 4x-0=7 | | -8x^6-4x^5= | | 7(-1)= | | (x-2)(x-2)=40 | | x(x+1)=x+x+1 | | t^2+8t=-15 | | .40(x-.5)=13 | | (z*z)+8z=-15 | | .25x-.666=.166 | | (t*t)-30t+29=0 | | (18+3)+(14+5)=(14+5)+(18+3) | | 28x-7y+13-18x-6-3y= | | 5x-14+2x=76 | | 37x-4=23 | | X=15000-.25x | | 52=13b | | q^2+6q+8=0 | | -2.5(g-8)-0.7g= | | -1/3( | | g(x)=8+2x+e^2x-6 | | f^1(x)=4x^3+3x^2+3x+3 | | f-1(x)=4x^3+3x^2+3x+3 | | f(x)=4x^3+3x^2+3x+3 |

Equations solver categories